Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
نویسندگان
چکیده
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.
منابع مشابه
Estimation of Dosimetric Parameters based on KNR and KNCSF Correction Factors for Small Field Radiation Therapy at 6 and 18 MV Linac Energies using Monte Carlo Simulation Methods
Background: Estimating dosimetric parameters for small fields under non-reference conditions leads to significant errors if done based on conventional protocols used for large fields in reference conditions. Hence, further correction factors have been introduced to take into account the influence of spectral quality changes when various detectors are used in non-reference conditions at differen...
متن کاملSmall photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation
Background: Small photon fields are increasingly used in modern radiotherapy especially in intensity modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) treatments. Accurate beam profile and central axis depth doses measurements of such beams are complicated due to the electron disequilibrium. Hence the EBT2 (external beam therapy) Gafchromic film was used for dosimetry of sm...
متن کاملThe effect of electronic disequilibrium on the received dose by lung in small fields with photon beams: Measurements and Monte Carlo study
Background: Prediction of the absorbed dose in irradiated volume plays an important role in the outcome of radiotherapy. Application of small fields for radiotherapy of thorax makes the dose calculation process inaccurate due to the existence of electronic disequilibrium and intrinsic deficiencies in dose calculation algorithms. To study the lung absorbed dose in radiotherapy with smal...
متن کاملEnergy and field size dependence of a silicon diode designed for small-field dosimetry
Purpose: To investigate the energy dependence/spectral sensitivity of silicon diodes designed for small-field dosimetry and obtain response factors (RFs) for arbitrary photon spectra using Monte Carlo (MC) simulations. Methods: The EGSnrc user-code DOSRZnrc was used to calculate the dose deposition in water and in the active volume of a stereotactic diode f...
متن کاملAn Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc
Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 58 8 شماره
صفحات -
تاریخ انتشار 2013